首页    期刊浏览 2025年07月09日 星期三
登录注册

文章基本信息

  • 标题:CO emission tracing a warp or radial flow within ≲100 au in the HD 100546 protoplanetary disk
  • 本地全文:下载
  • 作者:Catherine Walsh ; Cail Daley ; Stefano Facchini
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:607
  • 页码:1-15
  • DOI:10.1051/0004-6361/201731334
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) images of 12CO J = 3−2 emission from the protoplanetary disk around the Herbig Ae star, HD 100546. We expand upon earlier analyses of this data and model the spatially-resolved kinematic structure of the CO emission. Assuming a velocity profile which prescribes a flat or flared emitting surface in Keplerian rotation, we uncover significant residuals with a peak of ≈7δv, where δv = 0.21 km s-1 is the width of a single spectral resolution element. The shape and extent of the residuals reveal the possible presence of a severely warped and twisted inner disk extending to at most 100 au. Adapting the model to include a misaligned inner gas disk with (i) an inclination almost edge-on to the line of sight, and (ii) a position angle almost orthogonal to that of the outer disk reduces the residuals to <3δv. However, these findings are contrasted by recent VLT/SPHERE, MagAO/GPI, and VLTI/PIONIER observations of HD 100546 that show no evidence of a severely misaligned inner dust disk down to spatial scales of ~ 1 au. An alternative explanation for the observed kinematics are fast radial flows mediated by (proto)planets. Inclusion of a radial velocity component at close to free-fall speeds and inwards of ≈50 au results in residuals of ≈4δv. Hence, the model including a radial velocity component only does not reproduce the data as well as that including a twisted and misaligned inner gas disk. Molecular emission data at a higher spatial resolution (of order 10 au) are required to further constrain the kinematics within ≲100 au. HD 100546 joins several other protoplanetary disks for which high spectral resolution molecular emission shows that the gas velocity structure cannot be described by a purely Keplerian velocity profile with a universal inclination and position angle. Regardless of the process, the most likely cause is the presence of an unseen planetary companion.
  • 关键词:enprotoplanetary disksplanet-disk interactionssubmillimeter: planetary systemsstars: individual: HD 100546
国家哲学社会科学文献中心版权所有