首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Super-spinning compact objects and models of high-frequency quasi-periodic oscillations observed in Galactic microquasars - II. Forced resonances
  • 其他标题:II. Forced resonances
  • 本地全文:下载
  • 作者:A. Kotrlová ; E. Šrámková ; G. Török
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:607
  • 页码:1-8
  • DOI:10.1051/0004-6361/201730585
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:In our previous work (Paper I) we applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central compact object in three Galactic microquasars assuming the possibility that the central compact body is a super-spinning object (or a naked singularity) with external spacetime described by Kerr geometry with a dimensionless spin parameter a ≡ cJ/GM2 > 1. Here we extend our consideration, and in a consistent way investigate implications of a set of ten resonance models so far discussed only in the context of a < 1. The same physical arguments as in Paper I are applied to these models, i.e. only a small deviation of the spin estimate from a = 1, a ≳ 1, is assumed for a favoured model. For five of these models that involve Keplerian and radial epicyclic oscillations we find the existence of a unique specific QPO excitation radius. Consequently, there is a simple behaviour of dimensionless frequency M × νU(a) represented by a single continuous function having solely one maximum close to a ≳ 1. Only one of these models is compatible with the expectation of a ≳ 1. The other five models that involve the radial and vertical epicyclic oscillations imply the existence of multiple resonant radii. This signifies a more complicated behaviour of M × νU(a) that cannot be represented by single functions. Each of these five models is compatible with the expectation of a ≳ 1.
  • 关键词:enX-rays: binariesblack hole physicsaccretion, accretion disks
国家哲学社会科学文献中心版权所有