首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multilabel Classification with R Package mlr
  • 本地全文:下载
  • 作者:Philipp Probst ; Quay Au ; Giuseppe Casalicchio
  • 期刊名称:R News
  • 印刷版ISSN:1609-3631
  • 出版年度:2017
  • 卷号:9
  • 期号:1
  • 页码:352-369
  • 语种:English
  • 出版社:The R Foundation for Statistical Computing
  • 摘要:We implemented several multilabel classification algorithms in the machine learning package mlr. The implemented methods are binary relevance, classifier chains, nested stacking, dependent binary relevance and stacking, which can be used with any base learner that is accessible in mlr. Moreover, there is access to the multilabel classification versions of randomForestSRC and rFerns. All these methods can be easily compared by different implemented multilabel performance measures and resampling methods in the standardized mlr framework. In a benchmark experiment with several multilabel datasets, the performance of the different methods is evaluated.
国家哲学社会科学文献中心版权所有