期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:15
页码:4690-4695
DOI:10.1073/pnas.1420068112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceWe know little about the nature of the evolved interaction networks that give rise to the rapid coordinated collective response exhibited by many group-living organisms. Here, we study collective evasion in schooling fish using computational techniques to reconstruct the scene from the perspective of the organisms themselves. This method allows us to establish how the complex social scene is translated into behavioral response at the level of individuals and to visualize, and analyze, the resulting complex communication network as behavioral change spreads rapidly through groups. Thus, we can map, for any moment in time, the extent to which each individual is socially influential during collective evasion and predict the magnitude of such behavioral epidemics before they actually occur. Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of [~]150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion.