首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu
  • 本地全文:下载
  • 作者:Jinhai Zhang ; Wei Yang ; Sen Hu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:17
  • 页码:5342-5347
  • DOI:10.1073/pnas.1503082112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceAfter the Apollo and Luna missions, which were flown about 40 years ago, the Moon was explored only from orbit. In addition, no samples were returned from the young and high-FeO and TiO2 mare basalt in the northern Imbrium basin. Such samples are important to understand the formation and evolution of the Procellarum KREEP [potassium (K), rare earth elements (REE), and phosphorus (P)] terrain, a key terrain highly enriched in radioactive nuclides. The Chang'e-3 mission carried out the first in situ analyses of chemical and mineral compositions of the lunar soil and ground-based measurements of the lunar regolith and the underlying basalt units at this specific site. The lunar regolith layer recorded the surface processes of the Moon, whereas the basalt units recorded the volcanic eruption history. We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of [~]5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10-20% of the last residual melt of the lunar magma ocean.
  • 关键词:volcanic history ; Imbrium basin ; lunar rover Yutu ; lunar penetrating radar ; Chang’e-3 mission
国家哲学社会科学文献中心版权所有