首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Mechanically-driven phase separation in a growing bacterial colony
  • 本地全文:下载
  • 作者:Pushpita Ghosh ; Jagannath Mondal ; Eshel Ben-Jacob
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:17
  • 页码:E2166-E2173
  • DOI:10.1073/pnas.1504948112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceBacteria self-organize into a dense multicellular community known as a biofilm, in which cells are embedded in self-secreted extracellular polymeric substances (EPSs). A number of processes can contribute to spatial heterogeneity in a growing biofilm; among them, the effect of macromolecular crowding enhanced by the EPSs has largely remained unexplored. To understand the effect of macromolecular crowding in spontaneous spatial organization, we develop a computational model to investigate the explicit role of mechanical interactions in driving the collective behavior of bacterial cells in the presence of EPS particles in a colony growing on a solid substrate. Our findings demonstrate that an entropy-driven depletion interaction between bacteria and EPSs can induce significant phase separation and spatial heterogeneity in a biofilm. Secretion of extracellular polymeric substances (EPSs) by growing bacteria is an integral part of forming biofilm-like structures. In such dense systems, mechanical interactions among the structural components can be expected to significantly contribute to morphological properties. Here, we use a particle-based modeling approach to study the self-organization of nonmotile rod-shaped bacterial cells growing on a solid substrate in the presence of self-produced EPSs. In our simulation, all of the components interact mechanically via repulsive forces, occurring as the bacterial cells grow and divide (via consuming diffusing nutrient) and produce EPSs. Based on our simulation, we show that mechanical interactions control the collective behavior of the system. In particular, we find that the presence of nonadsorbing EPSs can lead to spontaneous aggregation of bacterial cells by a depletion attraction and thereby generates phase separated patterns in the nonequilibrium growing colony. Both repulsive interactions between cell and EPSs and the overall concentration of EPSs are important factors in the self-organization in a nonequilibrium growing colony. Furthermore, we investigate the interplay of mechanics with the nutrient diffusion and consumption by bacterial cells and observe that suppression of branch formation occurs due to EPSs compared with the case where no EPS is produced.
  • 关键词:biofilms ; extracellular polymeric substance ; depletion interaction ; mechanical interaction ; phase separation
国家哲学社会科学文献中心版权所有