期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:18
页码:5561-5566
DOI:10.1073/pnas.1419771112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceSolution-processed organic electronics are expected to pave the way for low-cost large-area electronics with new and exciting applications. However, realizing solution-processed organic electronics requires densely packed transistors with patterned and precisely registered organic semiconductors (OSCs) within the transistor channel with uniform electrical properties over a large area, a task that remains a significant challenge. To address such a challenge, we have developed an innovative technique that generates self-patterned and self-registered OSC film with low variability in electrical properties over a large area. We have fabricated highest density of transistors with a yield of 99%, along with various logic circuits. This work significantly advances organic electronics field to enable large-scale circuit fabrication in a facile and economical manner. The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed "controlled OSC nucleation and extension for circuits" (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication.