首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Estimation of Elemental Distributions by Combining Artificial Neural Network and Inverse Distance Weighted (IDW) Based on Lithogeochemical Data in Kahang Porphry Deposit, Central Iran
  • 本地全文:下载
  • 作者:Reza Karami ; Peyman Afzal
  • 期刊名称:Universal Journal of Geoscience
  • 印刷版ISSN:2331-9593
  • 电子版ISSN:2331-9615
  • 出版年度:2015
  • 卷号:3
  • 期号:2
  • 页码:59-65
  • DOI:10.13189/ujg.2015.030203
  • 语种:English
  • 出版社:Horizon Research Publishing
  • 摘要:Estimation of elemental distribution based on geochemical data is important for determination of elemental prospects in studied areas. The main aim of this study is to estimate Cu, Mo, Au and Ag with respect to lithogeochemical data in Kahang porphyry deposit, Central Iran, using combination of Inverse Distance Weighted (IDW) and Artificial Neural Network (ANN). The results obtained by the combination methods show that the proper elemental anomalies are associated with geological particulars including lithological units, alteration zones and faults. Moreover, correlation between raw data and the results reveals that the combination method can be applicable for interpretation of elemental distributions.
  • 关键词:Grade Estimation; Artificial Neural Network; Inverse Distance Weighted (IDW); Kahang Porphyry Deposit
国家哲学社会科学文献中心版权所有