首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Artificial Neural Network Modelling of Vibration in the Milling of AZ91D Alloy
  • 本地全文:下载
  • 作者:Ireneusz Zagórski ; Ireneusz Zagórski ; Monika Kulisz
  • 期刊名称:Advances in Science and Technology Research Journal
  • 印刷版ISSN:2080-4075
  • 电子版ISSN:2299-8624
  • 出版年度:2017
  • 卷号:11
  • 期号:3
  • 页码:261-269
  • DOI:10.12913/22998624/76546
  • 语种:English
  • 出版社:Society of Polish Mechanical Engineers and Technicians
  • 摘要:The paper reports the results of artificial neural network modelling of vibration in. a milling process of magnesium alloy AZ91D by a TiAlN-coated carbide tool. Vibrations in machining processes are regarded as an additional, absolute machinability index. The modelling was performed using the so-called “black box” model. The best fit was determined for the input and output data obtained from the machining process. The simulations were performed by the Statistica software using two types of neural networks: RBF (Radial Basis Function) and MLP (Multi-Layered Perceptron).
  • 关键词:Simulation;artificial neural networks;vibration;high-speed dry milling;magnesium alloys;chatter in milling
国家哲学社会科学文献中心版权所有