摘要:The main concern in environmental issue is on extreme phenomena (catastrophic) instead of common events. However, most statistical approaches are concerned primarily with the centre of a distribution or on the average value rather than the tail of the distribution which contains the extreme observations. The concept of extreme value theory affords attention to the tails of distribution where standard models are proved unreliable to analyse extreme series. High level of particulate matter (PM10) is a common environmental problem which causes various impacts to human health and material damages. If the main concern is on extreme events, then extreme value analysis provides the best result with significant evidence. The monthly average and monthly maxima PM10data for Perlis from 2003 to 2014 were analysed. Forecasting for average data is made by Holt-Winters method while return level determine the predicted value of extreme events that occur on average once in a certain period. The forecasting from January 2015 to December 2016 for average data found that the highest forecasted value is 58.18 (standard deviation 18.45) on February 2016 while return level achieved 253.76 units for 24 months (2015-2016) return periods.