首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Thermal fracturing on comets
  • 其他标题:Applications to 67P/Churyumov-Gerasimenko
  • 本地全文:下载
  • 作者:N. Attree ; O. Groussin ; L. Jorda
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2018
  • 卷号:610
  • DOI:10.1051/0004-6361/201731937
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet’s surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet’s complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳50 J m−2K−1s−1∕2) and ice content (≳45% at the equator). In this case, stresses penetrate to a typical depth of ~0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.
  • 关键词:Key wordsencomets: generalcomets: individual: 67P/Churyumov-Gerasimenkoplanets and satellites: physical evolution
国家哲学社会科学文献中心版权所有