首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Sulphur monoxide exposes a potential molecular disk wind from the planet-hosting disk around HD 100546
  • 本地全文:下载
  • 作者:Alice S. Booth ; Catherine Walsh ; Mihkel Kama
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2018
  • 卷号:611
  • DOI:10.1051/0004-6361/201731347
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Sulphur-bearing volatiles are observed to be significantly depleted in interstellar and circumstellar regions. This missing sulphur is postulated to be mostly locked up in refractory form. With ALMA we have detected sulphur monoxide (SO), a known shock tracer, in the HD 100546 protoplanetary disk. Two rotational transitions:J= 77–66(301.286 GHz) andJ= 78–67(304.078 GHz) are detected in their respective integrated intensity maps. The stacking of these transitions results in a clear 5σdetection in the stacked line profile. The emission is compact but is spectrally resolved and the line profile has two components. One component peaks at the source velocity and the other is blue-shifted by 5 km s−1. The kinematics and spatial distribution of the SO emission are not consistent with that expected from a purely Keplerian disk. We detect additional blue-shifted emission that we attribute to a disk wind. The disk component was simulated using LIME and a physical disk structure. The disk emission is asymmetric and best fit by a wedge of emission in the north-east region of the disk coincident with a “hot-spot” observed in the COJ= 3–2 line. The favoured hypothesis is that a possible inner disk warp (seen in CO emission) directly exposes the north-east side of the disk to heating by the central star, creating locally the conditions to launch a disk wind. Chemical models of a disk wind will help to elucidate why the wind is particularly highlighted in SO emission and whether a refractory source of sulphur is needed. An alternative explanation is that the SO is tracing an accretion shock from a circumplanetary disk associated with the proposed protoplanet embedded in the disk at 50 au. We also report a non-detection of SO in the protoplanetary disk around HD 97048.
  • 关键词:Key wordsenastrochemistrysubmillimeter: planetary systemsstars: individual: HD 100546, HD 97048protoplanetary disksstars: pre-main sequence
国家哲学社会科学文献中心版权所有