首页    期刊浏览 2025年08月03日 星期日
登录注册

文章基本信息

  • 标题:An artificial neural network model for optimization of finished goods inventory
  • 本地全文:下载
  • 作者:Paul, S. ; Paul, S. ; Azeem, A.
  • 期刊名称:International Journal of Industrial Engineering Computations
  • 印刷版ISSN:1923-2926
  • 电子版ISSN:1923-2934
  • 出版年度:2011
  • 卷号:2
  • 期号:2
  • 页码:431-438
  • DOI:10.5267/j.ijiec.2011.01.005
  • 语种:English
  • 出版社:Growing Science Publishing Company
  • 摘要:In this paper, an artificial neural network (ANN) model is developed to determine the optimumlevel of finished goods inventory as a function of product demand, setup, holding, and materialcosts. The model selects a feed-forward back-propagation ANN with four inputs, ten hiddenneurons and one output as the optimum network. The model is tested with a manufacturingindustry data and the results indicate that the model can be used to forecast finished goodsinventory level in response to the model parameters. Overall, the model can be applied foroptimization of finished goods inventory for any manufacturing enterprise in a competitivebusiness environment.
  • 关键词:Artificial neural network; Finished goods inventory; Inventory model; Lot sizing; Optimization
国家哲学社会科学文献中心版权所有