摘要:European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples.