摘要:We investigate some key aspects of the “heartbeat” variability consisting of series of bursts with a slow rise and a fast decay, thus far detected only in GRS 1915+105, IGR J17091−3624, and MXB 1730−335. A previous analysis based onBeppoSAX data of GRS 1915+105 revealed a hard-X delay (HXD), that is a lag of the burst rise at higher energies with respect to lower ones; this leads to narrower pulse widths,w, at higher energies. We here use some light curves ofRossi-XTE observations of GRS 1915+105 for a deeper analysis of this effect and search for its presence in those extracted from some IGR J17091−3624 and MXB 1730−335 observations performed with the same satellite. Our results show that, at variance with GRS 1915+105, no HXD is evident in the light curves of MXB 1730−335 and only a marginal HXD may be argued for IGR J17091−3624. For GRS 1915+105 we find a decreasing trend of the pulse width with energy following a power laww=A⋅E−swith an indexs≈ 0.8. Furthermore, we confirm the increase of the HXD with the recurrence timeTrecof the bursts in each series that was already found in previous works usingBeppoSAX data. Based on a spectral analysis of these three sources we conclude that the differences highlighted in the properties of the “heartbeat” variability are probably related to the different accreting compact object and the eventual presence of a corona in these binary interacting systems.