摘要:LLindane belongs to the organochlorine class of pesticides that have been banned in most of the developed countries in the 1970s. There are basically five stable isomers (actually eight isomers) of lindane – á, â, ã, ä and å. Only ã isomer has insecticidal properties and due to its persistence in the environment (presence of recalcitrant chlorine groups), it is considered an ecologically toxic substance. Its presence in the environment is due to its extensive use as insecticide for control of a broad spectrum of phytophagous and soil-inhabiting insects, public- health pests, and animal ectoparasites and also on a wide range of crops and in seed treatments. There is a possibility of availability of lindane (due to its semi-volatile nature) into the three major environmental compartments- air, water and soil. Various mechanisms responsible for the transport are hydrolysis, diffusion, volatilisation, sorption, biodegradation (slow), bioaccumulation and photo-oxidation. Bioavailability of lindane is dependent on many factors like pH of the medium, Kow, vapour pressure, temperature, solubility in water, residence time or half life. Lindane acts as a convulsant agent causing both acute and chronic neurotoxic, hepatotoxic and uterotoxic effects. It might also act as an endocrine disrupter and has also been declared as a potential teratogen, mutagen and carcinogen. The current ecotoxicological and human toxi- cological intervention values for lindane are 2.0 and 21.1 mg/ kg dry matter soil, respectively. This paper reviews the ecotoxicology of lindane comprising sources in the environment, processes that determine its fate and impacts on biological systems.