摘要:This paper focuses on the optimization of the McGill Schönflies Motion Generator. Recent trends on optimum design of parallel robots led us to investigate the advantages and disadvantages derived from an optimization based on performance indices. Particularly, we optimize here two different indices: the kinematic conditioning and the inertial conditioning, pertaining to the condition number of the Jacobian matrix and to that of the generalized inertia matrix of the robot, respectively. The problem of finding the characteristic length for the robot is first investigated by means of a constrained optimization problem; then plots of the kinetostatic and the inertial conditioning indices are provided for a particular trajectory to be tracked by the moving platform of the SMG. Deep connections appear between the two indices, reflecting a correlation between kinematics and dynamics.