摘要:In the shrink or press-fitted shafts such as railway axles, the rotor of a steam turbine or coupling, a high-stress concentration takes place in the close of contact edge due to relative slip between shaft and boss in a press-fitted shaft and this is a major cause of fatigue failure of the shaft. The object of this paper is to build a finite element analysis model for analysing press-fitted and bending load condition in a pressfitted assembly and is to propose a hub shape optimization method to minimize a contact pressure in the close of shaft contact edge. Numerical asymmetric-axisymmetric finite element model was developed to predict the contact stress state of the press-fitted shaft. Global optimization method, genetic algorithm, and local optimization method, sequential quadratic programming, was applied to the press-fitted assembly to optimize the hub contact edge geometry. The results showed that the maximum contact pressure with optimized hub shape decreased more than 60% compared to conventional hub shape, the maximum contact stress affecting fatigue life reduced about 47%. In addition, hub shape optimization design could be a useful tool, able to increase the load capabilities of press fits concerning wear and fatigue behaviour.