摘要:The article deals with the optimization of biomass combustion in a small heat source by means of an optimal distribution of combustion air. The uneven distribution of combustion air has been observed in certification tests and in real operation of used heat source and it has an influence on uneven combustion of biomass in the gasification chamber, on increase emissions and combustion losses. At this stage of the research, optimization of the combustion air distribution is performed by CFD simulations, which will be later verified by PIV measuring of the velocity fields in gasification and combustion chambers of the experimental heat source. CFD simulations and subsequent PIV measurements on the experimental device are realized without real combustion, only the air flow in the empty gasification chamber and in the combustion chamber is investigated. This approach has been chosen to simplify calculations and experiments, and on the assumption that when the combustion air distribution is optimal in empty chambers, it will be optimal even during real combustion. The primary air flow in the gasification chamber is in real operation affected by the size and shape of the inserted biomass and its placement in chamber and this effect is accidental and difficult to verifiable.