摘要:The main motivation of research work is connected with environmental issues. The production of the most important building material of the 20th century - Portland cement technology is associated with significant environmental pollution. The process requires very high temperature and it is energy consuming. During the manufacturing also takes place emission of significant amounts of carbon dioxide and highly toxic nitrogen oxides into the atmosphere These factors show that new solution in this area is required. The most promising alternative is inorganic polymer (geopolymer) technology.The main objective of the presented research work was to design a new composite for practical applications, especially in construction industry. The paper presents the results of research of geopolymer composites based on geopolymer binders made of metakaolin and fly ash with the addition of titanium oxide and aluminum-calcium cements (including mainly calcium monoglinate) in amount of 4 and 6% by weight. Research methods applied: tests for mechanical properties (compressive strength tests), scanning microscopy investigations (SEM) and X-Ray Diffraction (XRD).The results show that the addition of aluminum-calcium cements (including calcium monoglinate) significantly increases the compressive strength of geopolymers. Geopolymers based on fly ash with the addition of 6% calcium-aluminum cement with a calcium monoglinate content above 69% are characterized by compressive strength above 50 MPa, while geopolymers from metakaolin with the same additive were characterized by compressive strength above 80 MPa.