摘要:In the present work, the natural frequencies of cylindrical and spherical laminated shells with variable stiffness are numerically studied using a shear flexible isogeometric finite element. The kinematics relies on cubic shear deformation theory in which cubic variation is assumed for the surface displacements and a quadratic variation for the traverse displacement along the thickness. A zig-zag function, used for the in-plane displacements, accounts for the abrupt discontinuity at the boundaries of the laminae. The Lagrangian equations of motion is deployed to solve the frequencies of curved panels. A detailed parametric analysis examines the influence of fibre centre/edge angles, shell geometric variables, material anisotropy and edge conditions on frequencies and mode shapes.