摘要:The purpose of this research is to present a general procedure with low implementation cost to develop the discrete adjoint approach for solving optimization problems based on the LB method. Initially, the macroscopic and microscopic discrete adjoint equations and the cost function gradient vector are derived mathematically, in detail, using the discrete LB equation. Meanwhile, for an elementary case, the analytical evaluation of the macroscopic and microscopic adjoint variables and the cost function gradients are presented. The investigation of the derivation procedure shows that the simplicity of the Boltzmann equation, as an alternative for the Navier-Stokes (NS) equations, can facilitate the process of extracting the discrete adjoint equation. Therefore, the implementation of the discrete adjoint equation based on the LB method needs fewer attempts than that of the NS equations. Finally, this approach is validated for the sample test case, and the results gained from the macroscopic and microscopic discrete adjoint equations are compared in an inverse optimization problem. The results show that the convergence rate of the optimization algorithm using both equations is identical and the evaluated gradients have a very good agreement with each other.