摘要:For large scale systems, as a hierarchical multilevel decomposed design optimization method, analytical target cascading coordinates the inconsistency between the assigned targets and response in each level by a weighted-sum formulation. To avoid the problems associated with the weighting coefficients, single objective functions in the hierarchical design optimization are formulated by a bounded target cascading method in this paper. In the BTC method, a single objective optimization problem is formulated in the system level, and two kinds of coordination constraints are added: one is bound constraint for the design points based on the response from each subsystem level and the other is linear equality constraint for the common variables based on their sensitivities with respect to each subsystem. In each subsystem level, the deviation with target for design point is minimized in the objective function, and the common variables are constrained by target bounds. Therefore, in the BTC method, the targets are coordinated based on the optimization iteration information in the hierarchical design problem and the performance of the subsystems, and BTC method will converge to the global optimum efficiently. Finally, comparisons of the results from BTC method and the weighted-sum analytical target cascading method are presented and discussed.