首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Multifault Diagnosis for Rolling Element Bearings Based on Intrinsic Mode Permutation Entropy and Ensemble Optimal Extreme Learning Machine:
  • 本地全文:下载
  • 作者:Jianzhong Zhou ; Jian Xiao ; Han Xiao
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2014
  • 卷号:6
  • 页码:1-10
  • DOI:10.1155/2014/803919
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:This paper presented a novel procedure based on the ensemble empirical mode decomposition and extreme learning machine. Firstly, EEMD was utilized to decompose the vibration signals into a number of IMFs adaptively and the permutation entropy of each IMF was calculated to generate the fault feature matrix. Secondly, a new extreme learning machine was proposed by combining ensemble extreme learning machine and the evolutionary extreme learning machine which used an artificial bee colony algorithm to optimize the input weights and hidden bias. The proposed diagnosis algorithm was applied on the three rolling bearing fault diagnosis experiments. The numerical experimental results demonstrated that the proposed method had an improved generalization performance than traditional extreme and other variants.
国家哲学社会科学文献中心版权所有