首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Convolutional Neural Network Applied to Traversability Analysis of Vehicles:
  • 本地全文:下载
  • 作者:Li Linhui ; Wang Mengmeng ; Ding Xinli
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2013
  • 卷号:5
  • 页码:1-6
  • DOI:10.1155/2013/542832
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:We focus on the need for traversability analysis of vehicles with convolutional neural networks. Most related approaches to traversability analysis of vehicles suffer from the limitations imposed by extracting explicit features, algorithm scalability, and environment adaptivity. In views of this, an approach based on the convolutional neural network (CNN) is presented to traversability analysis of vehicles, which can extract implicit features. Besides, in order to enhance the training speed and accuracy, preprocessing and normalization are adopted before training. The experimental results demonstrate that our method achieves high accuracy and strong robustness.
国家哲学社会科学文献中心版权所有