摘要:The existence of runner interblade vortices can cause instability problems in Francis turbines, for example, pressure fluctuations, vibrations of runners, noise, and so forth. It is favorable in engineering practice to have the knowledge of the appearance of the incipient and developed inter blade vortex lines on the Hill diagram in unit parameters. Most numerical research on the inter blade vortices has been focused on the study of the characteristics of pressure fluctuations by single-phase flow calculations. However, since the two vortex lines are distinguished by observations of visible vortices, which contain cavitating flows, it is clear that cavitation calculations are needed for their predictions. A method by solving RANS equations with RNG k – ∊ turbulence model and ZGB cavitation model was proposed for the predictions in a Francis model turbine. Modifications of the turbulence viscosity were made for better simulation results. Vorticity criterion was chosen to identify the vortices. The fact that the results of cavitation calculations have a better agreement with experimental observations than single-phase calculations proves the validity of this prediction method.