摘要:Particular differences between an object and its surrounding cause salience, guide attention, and improve performance in various tasks. While much research has been dedicated to identifying which feature dimensions contribute to salience, much less regard has been paid to the quantitative strength of the salience caused by feature differences. Only a few studies systematically related salience effects to a common salience measure, and they are partly outdated in the light of new findings on the time course of salience effects. We propose Bundesen’s Theory of Visual Attention (TVA) as a theoretical basis for measuring salience and introduce an empirical and modeling approach to link this theory to data retrieved from temporal-order judgments. With this procedure, TVA becomes applicable to a broad range of salience-related stimulus material. Three experiments with orientation pop-out displays demonstrate the feasibility of the method. A 4th experiment substantiates its applicability to the luminance dimension.
关键词:salience;visual attention; Bayesian inference;theory of visual attention;compu tational modeling