首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Saliency Detection with Sparse Prototypes: An Approach Based on Multi-Dictionary Sparse Encoding
  • 本地全文:下载
  • 作者:Jun Wang ; Zemin Wu ; Chang Tian
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:176
  • DOI:10.1051/matecconf/201817603009
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:This paper proposes a bottom-up saliency detection algorithm based on multi-dictionary sparse recovery. Firstly, the SLIC algorithm is used to segment the image into superpixels in multilevel and atoms with a high background possibility are selected from the boundary superpixels to construct the multidictionary. Secondly, sparse recovery of the entire image is achieved using multi-dictionary to get subsaliency maps from the perspective of sparse recovery errors. The final saliency map is generated in a weighted fusion manner. Experimental results on three public datasets demonstrate the effectiveness of our model.
国家哲学社会科学文献中心版权所有