首页    期刊浏览 2025年12月25日 星期四
登录注册

文章基本信息

  • 标题:Some large deviations in Kingman's coalescent
  • 本地全文:下载
  • 作者:Depperschmidt, Andrej ; Pfaffelhuber, Peter ; Scheuringer, Annika
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2015
  • 卷号:20
  • 期号:0
  • 页码:1-14
  • DOI:10.1214/ECP.v20-3107
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:Kingman's coalescent is a random tree that arises from classical population genetic models such as the Moran model. Concerning the structure of the tree-top there are two well-known laws of large numbers: (i) The (shortest) distance, denoted by $T_n$, from the tree-top to the level when there are $n$ lines in the tree satisfies $nT_n \xrightarrow{n\to\infty} 2$ almost surely; (ii) At time $T_n$, the population is naturally partitioned in exactly $n$ families where individuals belong to the same family if they have a common ancestor at time $T_n$ in the past. If $F_{i,n}$ denotes the relative size of the $i$th family, then $n(F_{1,n}^2 + \cdots + F_{n,n}^2) \xrightarrow{n\to \infty}2$ almost surely. For both laws of large numbers we prove corresponding large deviations results. For (i), the rate of the large deviations is $n$ and we can give the rate function explicitly. For (ii), the rate is $n$ for downwards deviations and $\sqrt n$ for upwards deviations. In both cases we give exact rate functions.
  • 关键词:Kingman's coalescent; large deviations; uniform spacings;60F10; 60G09
国家哲学社会科学文献中心版权所有