首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Non-Liouville groups with return probability exponent at most 1/2
  • 本地全文:下载
  • 作者:Kotowski, Michał ; Virág, Bálint
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2015
  • 卷号:20
  • 期号:0
  • 页码:1-12
  • DOI:10.1214/ECP.v20-3774
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We construct a finitely generated group $G$ without the Liouville property such that the return probability of a random walk satisfies $p_{2n}(e,e) \gtrsim e^{-n^{1/2+ o(1)}}$. This shows that the constant $1/2$ in a recent theorem by Saloff-Coste and Zheng, saying that return probability exponent less than $1/2$ implies the Liouville property, cannot be improved. Our construction is based on permutational wreath products over tree-like Schreier graphs and the analysis of large deviations of inverted orbits on such graphs.
  • 关键词:permutational wreath products; random walks; return probabilities;60B15; 20F65
国家哲学社会科学文献中心版权所有