首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Symmetric 1-dependent colorings of the integers
  • 本地全文:下载
  • 作者:Holroyd, Alexander E. ; Liggett, Thomas M.
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2015
  • 卷号:20
  • 期号:0
  • 页码:1-8
  • DOI:10.1214/ECP.v20-4070
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:In a recent paper, we constructed a stationary $1-$dependent $4-$coloring of the integers that is invariant under permutations of the colors. This was the first stationary $k-$dependent $q-$coloring for any $k$ and $q$. When the analogous construction is carried out for $q>4$ colors, the resulting process is not $k-$dependent for any $k$. We construct here a process that is symmetric in the colors and $1-$dependent for every $q\geq 4$. The construction uses a recursion involving Chebyshev polynomials evaluated at $\sqrt{q}/2$.
  • 关键词:Random colorings; one-dependent processes;60G10;05C15;60C05
国家哲学社会科学文献中心版权所有