首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Bayesian Filters for Parameter Identification of Duffing Oscillator
  • 本地全文:下载
  • 作者:Vikas Kumar Mishra ; Rahul Radhakrishnan ; Abhinoy Kumar Singh
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:1
  • 页码:425-430
  • DOI:10.1016/j.ifacol.2018.05.068
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, a joint state and parameter estimation problem of Duffing oscillator is explored using Bayesian filters, where the parameter to be identified is considered as an additional state variable. From a variety of Bayesian filters, the unscented Kalman filter (UKF), cubature Kalman filter (CKF) and Gauss-Hermite filter (GHF) are chosen for solving this problem. The performance of these filters are compared in terms of the root mean square error (RMSE) calculated over a specified number of Monte-Carlo runs. From simulation results, it is found that the accuracy of CKF and GHF are almost same while the computational time for GHF is almost three times higher.
  • 关键词:KeywordsNonlinear filteringDuffing oscillatorThird-degree spherical cubature ruleHigher order Gauss-Laguerre quadrature rulemultidimensional Gauss-Hermite quadrature rule
国家哲学社会科学文献中心版权所有