期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2015
卷号:13
期号:2
页码:539-546
DOI:10.12928/telkomnika.v13i2.1258
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Based on the nonlinearity and time-variation of automatic parking path tracking control system, we use fuzzy control theories and methods to explore the control rules to improve fuzzy controllers and design an automobile steering controller. Then we build the simulation experiment platform of an automobile in Simulink to simulate the reversing settings of parallel parking. This paper adopts the Mamdani control rules; the membership function is the Gauss function. This paper verifies the fuzzy controller's kinematic model and the advantages of fuzzy control rules. Simulation results show that the design of the controller allows the automobile to stop into the parking space smaller than the space obtained by planning path, and automatic parking becomes possible in the parking plot. The control system is characterized by small tracking error, fast response and high reliability.
其他摘要:Based on the nonlinearity and time-variation of automatic parking path tracking control system, we use fuzzy control theories and methods to explore the control rules to improve fuzzy controllers and design an automobile steering controller. Then we build the simulation experiment platform of an automobile in Simulink to simulate the reversing settings of parallel parking. This paper adopts the Mamdani control rules; the membership function is the Gauss function. This paper verifies the fuzzy controller's kinematic model and the advantages of fuzzy control rules. Simulation results show that the design of the controller allows the automobile to stop into the parking space smaller than the space obtained by planning path, and automatic parking becomes possible in the parking plot. The control system is characterized by small tracking error, fast response and high reliability.