首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Research on Beef Skeletal Maturity Determination Based on Shape Description and Neural Network
  • 本地全文:下载
  • 作者:Xiangyan Meng ; Yumiao Ren ; Haixian Pan
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2015
  • 卷号:13
  • 期号:2
  • 页码:730-738
  • DOI:10.12928/telkomnika.v13i2.1468
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Physiological maturity is an important indicator for beef quality. In traditional method, the maturity grade is determined by subjectively evaluating the degree of cartilage ossification at the tips of the dorsal spine of the thoracic vertebrae. This paper uses the computer vision to replace the artificial method for extracting object (cartilage and bone) regions. Hu invariant moments of object region were calculated as the regional shape characteristic parameters. A trained Hopfield neural network model was used for recognizing cartilage and bone area in thoracic vertebrae image based on minimum Euclidean distance. The result showed that the accuracy of network recognition for cartilage and bone region was 92.75% and 87.68%, respectively. For automatically maturity prediction, the accuracy of prediction was 86%. Algorithm proposed in this paper proved the image description and neural network modeling was an effective method for extracting image feature regions.
  • 其他摘要:Physiological maturity is an important indicator for beef quality. In traditional method, the maturity grade is determined by subjectively evaluating the degree of cartilage ossification at the tips of the dorsal spine of the thoracic vertebrae. This paper uses the computer vision to replace the artificial method for extracting object (cartilage and bone) regions. Hu invariant moments of object region were calculated as the regional shape characteristic parameters. A trained Hopfield neural network model was used for recognizing cartilage and bone area in thoracic vertebrae image based on minimum Euclidean distance. The result showed that the accuracy of network recognition for cartilage and bone region was 92.75% and 87.68%, respectively. For automatically maturity prediction, the accuracy of prediction was 86%. Algorithm proposed in this paper proved the image description and neural network modeling was an effective method for extracting image feature regions.
国家哲学社会科学文献中心版权所有