首页    期刊浏览 2025年06月10日 星期二
登录注册

文章基本信息

  • 标题:A New Convex Hull, Sliding Window Based Online Adaptation Method
  • 本地全文:下载
  • 作者:H. Khosravani ; A. Ruano ; P.M. Ferreira
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:10
  • 页码:211-216
  • DOI:10.1016/j.ifacol.2018.06.264
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn any online adaptation scheme, two important phenomena should be taken into consideration; parameter shadowing and parameter interference. To alleviate these problems, in this paper a convex hull, sliding window based online adaptation method for fixed-structure Neural Networks is proposed. The method is capable of dealing with the two phenomena, presenting better results than known alternatives. An analysis of the real-time run time and memory consumption of the algorithm demonstrates that it can be used for real-time applications.
  • 关键词:KeywordsConvex HullMulti Objective Genetic AlgorithmOnline Adaptation ProcessRadial Basis Function Neural NetworksTime Series Models
国家哲学社会科学文献中心版权所有