首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Randomized Approximation Convex Hull Algorithm for High Dimensions
  • 本地全文:下载
  • 作者:Antonio Ruano ; Hamid Reza Khosravani ; Pedro M. Ferreira
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:10
  • 页码:123-128
  • DOI:10.1016/j.ifacol.2015.08.119
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe accuracy of classification and regression tasks based on data driven models, such as Neural Networks or Support Vector Machines, relies to a good extent on selecting proper data for designing these models that covers the whole input ranges in which they will be employed. The convex hull algorithm is applied as a method for data selection; however the use of conventional implementations of this method in high dimensions, due to its high complexity, is not feasible. In this paper, we propose a randomized approximation convex hull algorithm which can be used for high dimensions in an acceptable execution time.
  • 关键词:KeywordsConvex HullData Selection ProblemClassificationRegressionNeural NetworksSupport Vector Machines
国家哲学社会科学文献中心版权所有