首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Comparison of Approaches for Identification of All-data Cloud-based Evolving Systems
  • 本地全文:下载
  • 作者:Sašo Blažič ; Plamen Angelov ; Igor Škrjanc
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:10
  • 页码:129-134
  • DOI:10.1016/j.ifacol.2015.08.120
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we deal with identification of nonlinear systems which are modelled by fuzzy rule-based models that do not assume fixed partitioning of the space of antecedent variables. We first present an alternative way of describing local density in the cloud-based evolving systems. The Mahalanobis distance among the data samples is used which leads to the density that is more suitable when the data are scattered around the input-output surface. All the algorithms for the identification of the cloud parameters are given in a recursive form which is necessary for the implementation of an evolving system. It is also shown that a simple linearised model can be obtained without identification of the consequent parameters. All the proposed algorithms are illustrated on a simple simulation model of a static system.
  • 关键词:KeywordsIdentificationevolving systemsMahalanobis distanceTakagi-Sugeno modelclusters
国家哲学社会科学文献中心版权所有