首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Stochastic proxy modelling for coalbed methane production using orthogonal polynomials ∗
  • 本地全文:下载
  • 作者:Gouthami Senthamaraikkannan ; Vinay Prasad ; Ian Gates
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:8
  • 页码:88-93
  • DOI:10.1016/j.ifacol.2015.08.162
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractUncertainty in data or in the parameters of models occurs in many real world applications. Quantifying this uncertainty and its effects is required for robust design, control and optimization. In this paper, we attempt to build a proxy model for the stochastic solutions of coupled governing equations describing coalbed methane (CBM) production at different well bottomhole pressures. To achieve this, monthly production from wells (output) is expanded as a linear combination of Legendre orthogonal polynomials in the input (well bottomhole pressure) and the Wiener-Askey polynomial chaos is used to propagate the uncertainty of the model parameters. A Gaussian quadrature technique is then employed to solve for the coefficients of the basis functions in the proxy model. Alternatively, nonlinear least squares curve fitting using the Levenberg-Marquardt algorithm (LMA) is also used with polynomial chaos expansion to generate the stochastic proxy model. The proxy model now enables robust optimization using statistical metrics of CBM production calculated over the entire parameter space. In the case of multiple decision variables, the appropriate proxy model built using these techniques will allow for robust optimization without the use of any search algorithms.
  • 关键词:KeywordsUncertaintystochastic modellingpolynomial chaos expansionleast-squares approximationregressionrobust estimation
国家哲学社会科学文献中心版权所有