首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Adaptive Soft Sensing and On-line Estimation of the Critical Minimum Velocity with Application to an Oil Sand Primary Separation Vessel ∗
  • 本地全文:下载
  • 作者:Nima Sammaknejad ; Biao Huang ; R. Sean Sanders
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:8
  • 页码:211-216
  • DOI:10.1016/j.ifacol.2015.08.183
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractMost of the previous studies on the required critical minimum velocity to move the solid bed inside the slurry pipelines are related to the design step where the dynamics of the process are not thoroughly considered. In this paper, a general framework for on-line estimation of the critical minimum velocity is proposed and applied to the underflow stream of an important Primary Separation Vessel (PSV) in an oil sand industry. Appropriate statistical and probabilistic models are used to improve the on-line measurements and estimations. The proposed method demonstrates a satisfactory performance in detection of different conditions of the PSV operations.
  • 关键词:KeywordsFault detectionCritical minimum velocity estimationSoft sensingProbabilistic modelsOil sand industry
国家哲学社会科学文献中心版权所有