首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Robust Process monitoring via Stable Principal Component Pursuit
  • 本地全文:下载
  • 作者:Chun-Yu Chen ; Yuan Yao
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:8
  • 页码:617-622
  • DOI:10.1016/j.ifacol.2015.09.036
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFor enhancing product quality and operation safety, statistical process monitoring has become an important technique in process industries, where principal component analysis (PCA) is a commonly used method. However, PCA assumes that the training data matrix only contains an underlying low-rank structure corrupted by dense noise. When gross sparse errors, i.e. outliers, exist, PCA often fails. In this paper, a robust matrix recovery method called stable principal component pursuit (SPCP) is utilized to solve this problem. A process modeling and monitoring procedure is developed based on SPCP, the effectiveness of which is illustrated using the benchmark Tennessee Eastman process.
  • 关键词:Keywordsrobust process monitoringstable principal component pursuitsingular value thresholdingmatrix recoveryprincipal component analysis
国家哲学社会科学文献中心版权所有