首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Fault Detection with CP-Decomposed Qualitative Models *
  • 本地全文:下载
  • 作者:Thorsten Müller ; Gerwald Lichtenberg
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:5
  • 页码:309-314
  • DOI:10.1016/j.ifacol.2016.07.131
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe paper shows how a fault detection algorithm based on stochastic automata as qualitative model can be improved by non-negative CP tensor decomposition to make it applicable to large discrete-time systems. Because exponential growth of the number of transitions of the automaton with a rising number of states, inputs and outputs of the system can usually not be avoided, tensor decomposition methods enable the reduction of the amount of data to be stored by an order of magnitude. In order to exploit the full potential of the decomposition, a fault detection algorithm that is applicable to the decomposed tensor structure is defined. An example based on real measurement data shows the functionality of the algorithm.
  • 关键词:KeywordsFault detectionQualitative modelsStochastic automataTensor decomposition
国家哲学社会科学文献中心版权所有