首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Computer experiments with functional outputs: Global sensitivity analysis and metamodeling
  • 本地全文:下载
  • 作者:Benjamin Auder ; Benjamin Auder ; Bertrand Iooss
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2010
  • 卷号:2
  • 期号:6
  • 页码:7583-7584
  • DOI:10.1016/j.sbspro.2010.05.129
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractTo perform uncertainty, sensitivity or optimization analysis on scalar variables calculated by a cpu time expensive computer code, a widely accepted methodology consists in first identifying the most influential uncertain inputs (by screening techniques), and then in replacing the cpu time expensive model by a cpu inexpensive mathematical function, called a metamodel. This paper extends this methodology to the functional output case, for instance when the model output variables are curves. Our screening approach is based on the analysis of variance and principal component analysis of output curves. Our functional metamodeling consists in a curve classification step, a dimension reduction step, then a classical metamodeling step. An industrial nuclear reactor application (dealing with uncertainties in the pressurized thermal shock analysis) illustrates all these steps.
  • 关键词:Computer model;Curve classification;Functional data;Metamodel;sensitivity indices;Uncertainty analysis
国家哲学社会科学文献中心版权所有