首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Predicting Pre-university Student's Mathematics Achievement
  • 本地全文:下载
  • 作者:Chun-Teck Lye ; Chun-Teck Lye ; Lik-Neo Ng
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2010
  • 卷号:8
  • 页码:299-306
  • DOI:10.1016/j.sbspro.2010.12.041
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This study exploits three methods, namely the Back-propagation Neural Network (BPNN), Classification and Regression Tree (CART), and Generalized Regression Neural Network (GRNN) in predicting the student's mathematics achievement. The first part of this study utilizes enrolment data to predict the student's mid-semester evaluation result, whereas the latter part employs additional data to predict the student's final examination result. The predictive model's accuracy is evaluated using 10-fold cross-validation to identify the best model. The findings reveal that BPNN outperforms other models with an accuracy of 66.67% and 71.11% in predicting the mid-semester evaluation result and the final examination result respectively.
  • 关键词:Decision Tree;Back-propagation Neural Network;Generalized Regression Neural Network;Mathematics;Pre-university
国家哲学社会科学文献中心版权所有