首页    期刊浏览 2024年11月01日 星期五
登录注册

文章基本信息

  • 标题:Modeling Arterial Travel Time with Limited Traffic Variables using Conditional Independence Graphs & State-Space Neural Networks
  • 本地全文:下载
  • 作者:Ghassan Abu-Lebdeh ; Ghassan Abu-Lebdeh ; Ajay K. Singh
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2011
  • 卷号:16
  • 页码:207-217
  • DOI:10.1016/j.sbspro.2011.04.443
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents travel time prediction models for both congested and non-congested conditions on urban arterial using only limited basic traffic data. The state-space notion of traffic processes and State-Space Neural Network (SSSNNet) models are used on simulation generated traffic data. Conditional Independence (CI) graphs are used to identify independence and interaction between observable traffic parameters thus only relevant ones can be used to predict travel time. Even with limited data, the predictive performance and computational efficiency of Conditional Independence Graphs coupled with State-Space Neural Networks are practically accurate. They also outperformed a traditional Artificial Neural Network model.
  • 关键词:Travel time;Urban arterials;Conditional Independence graphs;State space neural networks
国家哲学社会科学文献中心版权所有