首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Merged Agreement Algorithms for Domain Independent Sentiment Analysis
  • 本地全文:下载
  • 作者:Dinko Lambov ; Dinko Lambov ; Sebastião Pais
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2011
  • 卷号:27
  • 页码:248-257
  • DOI:10.1016/j.sbspro.2011.10.605
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we consider the problem of building models that have high sentiment classification accuracy across domains. For that purpose, we present and evaluate three new algorithms based on multi-view learning using both high-level and low-level views, which show improved results compared to the state-of-the-art SAR algorithm [1] over cross-domain text subjectivity classification. Our experimental results present accuracy levels of 80% with two views, combining SVM classifiers over high-level features and unigrams compared to 77.1% for the SAR algorithm.
  • 关键词:Sentiment Analysis;Subjectivity Classification;Multi-view Learning
国家哲学社会科学文献中心版权所有