首页    期刊浏览 2026年01月02日 星期五
登录注册

文章基本信息

  • 标题:Improving face recognition from a single image per person via virtual images produced by a bidirectional network
  • 本地全文:下载
  • 作者:Fatemeh Abdolali ; Fatemeh Abdolali ; Seyyed Ali Seyyedsalehi
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2012
  • 卷号:32
  • 页码:108-116
  • DOI:10.1016/j.sbspro.2012.01.019
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this article, for the purpose of improving neural network models applied in face recognition using single image per person, a bidirectional neural network inspired of neocortex functional model is presented. We have applied this novel adapting model to separate person and pose information. To increase the number of training samples in the classifier neural network, virtual views of frontal images in the test dataset are synthesized using estimated manifolds. Training classifier network via virtual images gives an accuracy rate of 85.45% which shows 14.55% improvement in accuracy of face recognition compared to training classifier with only frontal view images.
  • 关键词:Attractor dynamics;face recognition;manifold learning;recurrent connections;virtual images
国家哲学社会科学文献中心版权所有