首页    期刊浏览 2025年09月18日 星期四
登录注册

文章基本信息

  • 标题:A Metaheuristic Dynamic Traffic Assignment Model for O-D Matrix Estimation using Aggregate Data
  • 本地全文:下载
  • 作者:Leonardo Caggiani ; Leonardo Caggiani ; Mauro Dell’Orco
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2012
  • 卷号:54
  • 页码:685-695
  • DOI:10.1016/j.sbspro.2012.09.786
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFor a static/dynamic O-D matrix estimation, usually, the basic required information is a starting estimation of O-D matrix and a set of traffic counts. In the era of the Intelligent Transportation Systems, a dynamic estimation of traffic demand has become a crucial issue. Different Dynamic Traffic Assignment (DTA) models have been proposed, used also for O-D matrices estimation. This paper presents a dynamic O-D demand estimator, using a novel simulation-based DTA algorithm. The core of the proposed algorithm is a mesoscopic dynamic network loading model used in conjunction with a Bee Colony Optimization (BCO). The BCO is capable to solve high level combinatorial problems with fast convergence performances, allowing to overcome classical demand-flow relationships drawbacks.
  • 关键词:Metaheuristic ;Dynamic assignment;O-D matrix estimation;Traffic counts;Bee colony optimization
国家哲学社会科学文献中心版权所有