摘要:AbstractTraditional queueing network models assume infinite queue capacities due to the complexity of capturing interactions between finite capacity queues. Accounting for this correlation can help explain how congestion propagates through a network. Joint queue-length distribution can be accurately estimated through simulation. Nonetheless, simulation is a computationally intensive technique, and its use for optimization purposes is challenging. By modeling the system analytically, we lose accuracy but gain efficiency and adaptability and can contribute novel information to a variety of congestion related problems, such as traffic signal optimization.We formulate an analytical technique that combines queueing theory with aggregation-disaggregation techniques in order to approximate the joint network distribution, considering an aggregate description of the network. We propose a stationary formulation. We consider a tandem network with three queues.The model is validated by comparing the aggregate joint distribution of the three queue system with the exact results determined by a simulation over several scenarios. It derives a good approximation of aggregate joint distributions.