首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Automated Real-time Classification of Functional States based on Physiological Parameters
  • 本地全文:下载
  • 作者:Ekaterina M. Lobacheva ; Ekaterina M. Lobacheva ; Yulia N. Galatenko
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:86
  • 页码:373-378
  • DOI:10.1016/j.sbspro.2013.08.582
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAn automated real-time classification of human functional states is an important problem for stress resistance evaluation, supervision over operators of critical infrastructure, automated teaching and phobia therapy. In this paper we propose a novel method for binary classification of functional states based on the integrated analysis of (peripheral) physiological parameters: galvanic skin response, respiratory rate, electrocardiographic data, body temperature, electromyographic data, photoplethysmographic data, muscle contraction. The method is based on Gradient Boosted Trees algorithm. A testing of the method showed that in case of stress vs. calm wakefulness differentiation a reliability of the method exceeds 80%.
  • 关键词:Functional state;Stress;Automated classification;Gradient Boosted Trees;Individual tuning;Galvanic skin response;Electromyogram;Respiratory rate;Body temperature;Muscle contraction
国家哲学社会科学文献中心版权所有