首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A New Traffic Prediction Method based on Dynamic Tensor Completion
  • 本地全文:下载
  • 作者:Huachun Tan ; Huachun Tan ; Yuankai Wu
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:96
  • 页码:2431-2442
  • DOI:10.1016/j.sbspro.2013.08.272
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractTraditional traffic prediction methods treat traffic data as one dimensional time series that can’t make full use of multi-mode correlation of traffic data, hence previous prediction models exist different levels of predictability and limits. To fully utilize the intrinsic multiple correlations of traffic data, in this paper a multi dimensional array-tensor model has proposed to encapsulate the traffic volume data. And a new traffic prediction method has been proposed, which includes rough estimation with intra-day trend and exact estimation with dynamic tensor completion (DTC) Experimental results demonstrate that the proposed prediction method is more accurate and reliable than traditional prediction methods.
  • 关键词:short-term traffic prediction;dynamic tensor completion ;multi-correlation analysis;intra-day trend
国家哲学社会科学文献中心版权所有